Clementine Dulieu

From: Clementine Dulieu

Sent: Friday, May 10, 2019 5:49 PM

To: tims@russellsgc.com

Cc: Larry Mastera; Julia Redden

Subject: Wayland Property Owner Data Transmittal - April 2019

Attachments: ERM Lab Report_April 2019.pdf; Russell Garden Center BWSC-123 Form.pdf

Hi Tim,

ERM collected groundwater samples from monitoring wells located on Russell's Garden Center property at the former Raytheon Facility (the "Site") located at 430 Boston Post Road in Wayland, MA in April 2019. The analytical results and BWSC-123 form are attached to this email.

These results are being sent via email for Russell's Garden Center records.

Please let me know if you have any questions or require any additional information.

Thanks,

Clementine Dulieu Project Geologist

ERM

One Beacon Street, 5th Floor | Boston, MA 02108 | USA **T** +1 617 646 7860 | **M** +1 774 722 2902 **E** clementine.dulieu@erm.com | **W** www.erm.com

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC123

This Notice is Related to: Release Tracking Number

- 1	l .

NOTICE OF ENVIRONMENTAL SAMPLING

	As required by 310 CMR 40.1403(10) of the Massachusetts Contingency Plan
Α.	The address of the disposal site related to this Notice and Release Tracking Number (provided above):
1.	Street Address:
	City/Town: Zip Code:
В.	This notice is being provided to the following party:
1.	Name:
2.	Street Address:
	City/Town: Zip Code:
C.	This notice is being given to inform its recipient (the party listed in Section B): 1. That environmental sampling will be/has been conducted at property owned by the recipient of this notice.
	2. Of the results of environmental sampling conducted at property owned by the recipient of this notice.
	3. Check to indicate if the analytical results are attached. (If item 2. above is checked, the analytical results from the environmental sampling must be attached to this notice.)
D.	Location of the property where the environmental sampling will be/has been conducted:
1.	Street Address:
	City/Town: Zip Code:
2.	MCP phase of work during which the sampling will be/has been conducted:
	Immediate Response Action Release Abatement Measure Utility-related Abatement Measure Phase I Initial Site Investigation Phase II Comprehensive Site Assessment Phase III Feasibility Evaluation Phase IV Remedy Implementation Plan Phase V/Remedy Operation Status Post-Temporary Solution Operation, Maintenance and Monitoring Other (specify)
3.	Description of property where sampling will be/has been conducted:
	residential commercial industrial school/playground Other(specify)
	Description of the sampling locations and types (e.g., soil, groundwater, indoor air, soil gas) to the extent known at the ne of this notice.
	Contact information related to the party providing this notice:
	ontact Name: reet Address:
	ty/Town: Zip Code:
	elephone: Email:

Revised: 5/30/2014 Page 1 of 2

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BW	SC ₁	23
----	-----------------	----

This Noti	ce is Rel	ated to:
Release	Tracking	Number

-	

NOTICE OF ENVIRONMENTAL SAMPLING

As required by 310 CMR 40.1403(10) of the Massachusetts Contingency Plan

MASSACHUSETTS REGULATIONS THAT REQUIRE THIS NOTICE

This notice is being provided pursuant to the Massachusetts Contingency Plan and the notification requirement at 310 CMR 40.1403(10). The Massachusetts Contingency Plan is a state regulation that specifies requirements for parties who are taking actions to address releases of chemicals (oil or hazardous material) to the environment.

THE PERSON(S) PROVIDING THIS NOTICE

This notice has been sent to you by the party who is addressing a release of oil or hazardous material to the environment at the location listed in **Section A** on the reverse side of this form. (The regulations refer to the area where the oil or hazardous material is present as the "disposal site".)

PURPOSE OF THIS NOTICE

When environmental samples are taken as part of an investigation of a release for which a notification to MassDEP has been made under the Massachusetts Contingency Plan (310 CMR 40.0300) on behalf of someone other than the owner of the property, the regulations require that the property owner (listed in **Section B** on the reverse side of this form) be given notice of the environmental sampling. The regulations also require that the property owner subsequently receive the analytical results following the analysis of the environmental samples.

Section C on the reverse side of this form indicates the circumstance under which you are receiving this notice at this time. If you are receiving this notice to inform you of the analytical results following the analysis of the environmental samples, you should also have received, as an attachment, a copy of analytical results. These results should indicate the number and type(s) of samples (e.g., soil, groundwater) analyzed, any chemicals identified, and the measured concentrations of those chemicals.

Section D on the reverse side of this form identifies the property where the environmental sampling will be/has been conducted, provides a description of the sampling locations within the property, and indicates the phase of work under the Massachusetts Contingency Plan regulatory process during which the samples will be/were collected.

FOR MORE INFORMATION

Information about the general process for addressing releases of oil or hazardous material under the Massachusetts Contingency Plan and related public involvement opportunities may be found at http://www.mass.gov/eea/agencies/massdep/cleanup. For more information regarding this notice, you may contact the party listed in **Section E** on the reverse side of this form. Information about the disposal site identified in Section A is also available in files at the Massachusetts Department of Environmental Protection. See http://public.dep.state.ma.us/SearchableSites2/Search.aspx to view site-specific files on-line or http://mass.gov/eea/agencies/massdep/about/contacts/conduct-a-file-review.html if you would like to make an appointment to see these files in person. Please reference the **Release Tracking Number** listed in the upper right hand corner on the reverse side of this form when making file review appointments.

Revised: 5/30/2014 Page 2 of 2

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-151402-1 Client Project/Site: IDS Wayland

For:

ERM-Northeast
One Beacon Steet
5th Floor
Boston, Massachusetts 02108

Attn: Lyndsey Colburn

Denist L'Aiglia

Authorized for release by: 4/10/2019 3:16:47 PM

Denise Giglia, Project Manager I denise.giglia@testamericainc.com

Designee for

Becky Mason, Project Manager II (413)572-4000

becky.mason@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

4

5

_

8

9

11

1/

Client: ERM-Northeast Project/Site: IDS Wayland Laboratory Job ID: 480-151402-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	7
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	17
Lab Chronicle	18
Certification Summary	19
Method Summary	20
Sample Summary	21
Receipt Checklists	22
Chain of Custody	23

5

7

0

10

12

Definitions/Glossary

Client: ERM-Northeast Job ID: 480-151402-1

Project/Site: IDS Wayland

Qualifiers

GC/MS VOA

* LCS or LCSD is outside acceptance limits.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

3

Λ

Ę

5

6

7

8

4 O

11

12

4.4

Case Narrative

Client: ERM-Northeast

Job ID: 480-151402-1

Project/Site: IDS Wayland

Job ID: 480-151402-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-151402-1

Receipt

The samples were received on 4/5/2019 1:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.1° C.

GC/MS VOA

Method 8260C: With the exception of diluted samples, per question G on the MassDEP Analytical Protocol Certification Form, TestAmerica's routine reporting limits do not achieve the CAM reporting limits specified in this CAM protocol for 1,2-dibromo-3-chloropropane, Carbon Disulfide, Isopropyl Ether, Naphthalene, tert-Amyl Methyl Ether and Tetrahydrofuran.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-466874 recovered outside the MCP control limit criteria for the following analytes: 1,1,1,2-Tetrachloroethane, 1,4-Dioxane, 2,2-Dichloropropane, Acetone and Carbon tetrachloride. MCP protocol allows for 20% of the target compounds to be outside the 20% difference but not over 40% difference. Difficult analytes are allowed to be outside the 20% difference but not over 60% difference. The following samples are impacted: MW-217S-20190403-01 (480-151402-1) and MW-217M-20190403-01 (480-151402-2).

Method 8260C: The laboratory control sample duplicate (LCSD) for batch 480-466874 recovered outside control limits but were greater than 10% for the following analytes: Acetone and Carbon tetrachloride. MCP protocol allows for 10% of the target compounds to be outside of the limits provided the recoveries are over 10%. The following samples are impacted: MW-217S-20190403-01 (480-151402-1) and MW-217M-20190403-01 (480-151402-2).

Method 8260C: The laboratory control sample (LCS) and/or the laboratory control sample duplicate (LCSD) for batch 480-466874 exceeded control limits for the following analyte: 2-Butanone and Tetrahydrofuran. Unlike the calibration standards, this is due to the coelution with Ethyl Acetate and Methacrylonitrile in the spiking solution. This does not indicate a performance issue with the spike recovery, but rather the laboratory's ability to measure the two analytes together in a combined spiking solution. Through the use of spectral analysis, the two compounds can be distinguished from one another if present in a client sample. The following samples were affected: MW-217S-20190403-01 (480-151402-1) and MW-217M-20190403-01 (480-151402-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

6

8

9

10

12

13

14

MassDEP Analytical Protocol Certification Form										
Laboratory	y Name:	TestAmer	ica Buffalo	Project #:		480-1514	02			
Project Lo	ocation:	IDS W	/yland	RTN:						
This form	provide	s certifications for	the following dat	a set: list Laborato	ry Sample ID Num	ber(s):				
480-15140										
Matrices:	<u> </u>									
CAM Protocols (check all that apply below):										
8260 VOC		7470/7471 Hg	Mass DEP VPH	8081 Pesticides	7196 Hex Cr		Mass DI		$^{ extsf{H}}$	
CAM II A 8270 SVO	C	CAM III B	Mass DEP EPH	CAM V B 4 8151 Herbicides	CAM VI B 8330 Explosives		CAM IX TO-15 V			
CAM II B		CAM III C	CAM IV B	CAM V C	CAM VIII A		CAM IX			
0040 N4 4			0000 000	9014 Total	0000 B 11 1					
6010 Meta CAM III A	is \square	6020 Metals CAM III D	8082 PCB CAM V A	Cyanide/PAC CAM VI A	6860 Perchlorate					
	rmative	<u> </u>	<u> </u>	F are required for "		ainty" sta	ntus			
				t with those describe	•					
A prop	erly pres	served (including ter		eld or laboratory, and			_			
	hod holdi						Yes		No	
	B Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?								No	
	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?								No	
	ality Assu		-	ting requirements sp for the Acquisition ar			Yes		No	
a. V E mod	PH, EPH lification(s)? (Refer to the inc	dividual method(s) t	ethod conducted with for a list of significan e analyte list reporte	t modifications).	>	Yes		No No	
Wor			•	ance standard non-c					140	
eval	uated in	a laboratory narrativ	ve (including all "No	" responses to Ques	stions A through E)	?	Yes		No	
1	•		<u>· </u>	re required for "Pre						
prote	ocol(s)?			ting limits specified in			Yes		No ¹	
				" status may not ned 1056 (2)(k) and WCS		lata usabil	ity and			
				e CAM protocol(s) a			Yes		No ¹	
		<u> </u>	<u> </u>	specified in the selec		s) 2	Yes		No ¹	
		· · · · · · · · · · · · · · · · · · ·		d laboratory narrativ	<u> </u>	3):	103			
I, the unde	rsigned, a	attest under the pair nation, the material o	ns and penalties of p	perjury that, based up alytical report is, to t	pon my personal ind			onsible	e for	
Signature:		Denise L'Gligh	ia	Position:	Pro	oject Man	ager I			
Printed Na	me:	Denise	L. Giglia	Date:		4/10/19 15:13				

Detection Summary

Client: ERM-Northeast Job ID: 480-151402-1

Project/Site: IDS Wayland

Client Sample ID: MW-217S-20190403-01

Lab Sample ID: 480-151402-1

No Detections.

Client Sample ID: MW-217M-20190403-01

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethane	2.7	1.0	ug/L		8260C	Total/NA
1,2-Dichlorobenzene	1.1	1.0	ug/L	1	8260C	Total/NA
cis-1,2-Dichloroethene	1.0	1.0	ug/L	1	8260C	Total/NA
Methyl tert-butyl ether	56	1.0	ug/L	1	8260C	Total/NA
Tert-amyl methyl ether	22	5.0	ug/L	1	8260C	Total/NA
Trichloroethene	6.9	1.0	ug/L	1	8260C	Total/NA

2

6

9

10

12

13

Client Sample Results

Client: ERM-Northeast Job ID: 480-151402-1

Project/Site: IDS Wayland

Client Sample ID: MW-217S-20190403-01

Date Collected: 04/03/19 14:36 Date Received: 04/05/19 01:00 Lab Sample ID: 480-151402-1

Matrix: Water

Method: 8260C - Volatile Org Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L		<u>-</u>	04/09/19 12:31	
1,1,1-Trichloroethane	ND		1.0		ug/L			04/09/19 12:31	
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			04/09/19 12:31	
1,1,2-Trichloroethane	ND		1.0		ug/L			04/09/19 12:31	
1,1-Dichloroethane	ND		1.0		ug/L			04/09/19 12:31	
1,1-Dichloroethene	ND		1.0		ug/L			04/09/19 12:31	
1,1-Dichloropropene	ND		1.0		ug/L			04/09/19 12:31	
1,2,3-Trichlorobenzene	ND		1.0		ug/L			04/09/19 12:31	
1,2,3-Trichloropropane	ND		1.0		ug/L			04/09/19 12:31	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			04/09/19 12:31	
1,2,4-Trimethylbenzene	ND		1.0		ug/L			04/09/19 12:31	
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			04/09/19 12:31	
1,2-Dichlorobenzene	ND		1.0		ug/L			04/09/19 12:31	
1,2-Dichloroethane	ND		1.0		ug/L			04/09/19 12:31	
1,2-Dichloropropane	ND		1.0		ug/L			04/09/19 12:31	
1,3,5-Trimethylbenzene	ND		1.0		ug/L			04/09/19 12:31	
1,3-Dichlorobenzene	ND		1.0		ug/L			04/09/19 12:31	
1,3-Dichloropropane	ND		1.0		ug/L			04/09/19 12:31	
1,4-Dichlorobenzene	ND		1.0		ug/L			04/09/19 12:31	
1,4-Dioxane	ND		50		ug/L			04/09/19 12:31	
2,2-Dichloropropane	ND		1.0		ug/L			04/09/19 12:31	
2-Butanone (MEK)	ND	*	10		ug/L			04/09/19 12:31	
2-Chlorotoluene	ND		1.0		ug/L			04/09/19 12:31	
2-Hexanone	ND		10		ug/L			04/09/19 12:31	
4-Chlorotoluene	ND		1.0		ug/L			04/09/19 12:31	
4-Isopropyltoluene	ND		1.0		ug/L			04/09/19 12:31	
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			04/09/19 12:31	
Acetone	ND	*	50		ug/L			04/09/19 12:31	
Benzene	ND		1.0		ug/L			04/09/19 12:31	
Bromobenzene	ND		1.0		ug/L			04/09/19 12:31	
Bromoform	ND		1.0		ug/L			04/09/19 12:31	
Bromomethane	ND		2.0		ug/L			04/09/19 12:31	
Carbon disulfide	ND		10		ug/L			04/09/19 12:31	
Carbon tetrachloride	ND	*	1.0		ug/L			04/09/19 12:31	
Chlorobenzene	ND		1.0		ug/L			04/09/19 12:31	
Chlorobromomethane	ND		1.0		ug/L			04/09/19 12:31	
Chlorodibromomethane	ND		0.50		ug/L			04/09/19 12:31	
Chloroethane	ND		2.0		ug/L			04/09/19 12:31	
Chloroform	ND		1.0		ug/L			04/09/19 12:31	
Chloromethane	ND		2.0		ug/L			04/09/19 12:31	
cis-1,2-Dichloroethene	ND		1.0		ug/L			04/09/19 12:31	
cis-1,3-Dichloropropene	ND		0.40		ug/L			04/09/19 12:31	
Dichlorobromomethane	ND		0.50		ug/L			04/09/19 12:31	
Dichlorodifluoromethane	ND		1.0		ug/L			04/09/19 12:31	
Ethyl ether	ND		1.0		ug/L			04/09/19 12:31	
Ethylbenzene	ND		1.0		ug/L			04/09/19 12:31	
Ethylene Dibromide	ND		1.0		ug/L			04/09/19 12:31	
Hexachlorobutadiene	ND		0.40		ug/L			04/09/19 12:31	
Isopropyl ether	ND		10		ug/L			04/09/19 12:31	

Eurofins TestAmerica, Buffalo

Page 7 of 23 4/10/2019

Job ID: 480-151402-1

Client: ERM-Northeast Project/Site: IDS Wayland

Client Sample ID: MW-217S-20190403-01

Date Collected: 04/03/19 14:36

Date Collected: 04/03/19 14:36
Date Received: 04/05/19 01:00

Lab Sample ID: 480-151402-1

. Matrix: Water

Method: 8260C - Volatile	Organic Compounds (GC/MS)	(Continued)	
Analyto	Popult Qualifier	DI M	л

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Isopropylbenzene	ND		1.0		ug/L			04/09/19 12:31	
Methyl tert-butyl ether	ND		1.0		ug/L			04/09/19 12:31	
Methylene Chloride	ND		1.0		ug/L			04/09/19 12:31	
m-Xylene & p-Xylene	ND		2.0		ug/L			04/09/19 12:31	
Naphthalene	ND		5.0		ug/L			04/09/19 12:31	
n-Butylbenzene	ND		1.0		ug/L			04/09/19 12:31	
N-Propylbenzene	ND		1.0		ug/L			04/09/19 12:31	
o-Xylene	ND		1.0		ug/L			04/09/19 12:31	
sec-Butylbenzene	ND		1.0		ug/L			04/09/19 12:31	
Styrene	ND		1.0		ug/L			04/09/19 12:31	
Tert-amyl methyl ether	ND		5.0		ug/L			04/09/19 12:31	
Tert-butyl ethyl ether	ND		5.0		ug/L			04/09/19 12:31	
tert-Butylbenzene	ND		1.0		ug/L			04/09/19 12:31	
Tetrachloroethene	ND		1.0		ug/L			04/09/19 12:31	
Tetrahydrofuran	ND	*	10		ug/L			04/09/19 12:31	
Toluene	ND		1.0		ug/L			04/09/19 12:31	
trans-1,2-Dichloroethene	ND		1.0		ug/L			04/09/19 12:31	
trans-1,3-Dichloropropene	ND		0.40		ug/L			04/09/19 12:31	
Trichloroethene	ND		1.0		ug/L			04/09/19 12:31	
Trichlorofluoromethane	ND		1.0		ug/L			04/09/19 12:31	
Vinyl chloride	ND		1.0		ug/L			04/09/19 12:31	
Dibromomethane	ND		1.0		ug/L			04/09/19 12:31	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100	70 - 130		04/09/19 12:31	1
1,2-Dichloroethane-d4 (Surr)	113	70 - 130		04/09/19 12:31	1
4-Bromofluorobenzene (Surr)	97	70 - 130		04/09/19 12:31	1

Client Sample ID: MW-217M-20190403-01

Date Collected: 04/03/19 14:45 Date Received: 04/05/19 01:00 Lab Sample ID: 480-151402-2

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND ND	1.0		ug/L			04/09/19 12:56	1
1,1,1-Trichloroethane	ND	1.0		ug/L			04/09/19 12:56	1
1,1,2,2-Tetrachloroethane	ND	0.50		ug/L			04/09/19 12:56	1
1,1,2-Trichloroethane	ND	1.0		ug/L			04/09/19 12:56	1
1,1-Dichloroethane	2.7	1.0		ug/L			04/09/19 12:56	1
1,1-Dichloroethene	ND	1.0		ug/L			04/09/19 12:56	1
1,1-Dichloropropene	ND	1.0		ug/L			04/09/19 12:56	1
1,2,3-Trichlorobenzene	ND	1.0		ug/L			04/09/19 12:56	1
1,2,3-Trichloropropane	ND	1.0		ug/L			04/09/19 12:56	1
1,2,4-Trichlorobenzene	ND	1.0		ug/L			04/09/19 12:56	1
1,2,4-Trimethylbenzene	ND	1.0		ug/L			04/09/19 12:56	1
1,2-Dibromo-3-Chloropropane	ND	5.0		ug/L			04/09/19 12:56	1
1,2-Dichlorobenzene	1.1	1.0		ug/L			04/09/19 12:56	1
1,2-Dichloroethane	ND	1.0		ug/L			04/09/19 12:56	1
1,2-Dichloropropane	ND	1.0		ug/L			04/09/19 12:56	1
1,3,5-Trimethylbenzene	ND	1.0		ug/L			04/09/19 12:56	1

Eurofins TestAmerica, Buffalo

Page 8 of 23 4/10/2019

Client Sample Results

Client: ERM-Northeast Job ID: 480-151402-1

Project/Site: IDS Wayland

Client Sample ID: MW-217M-20190403-01

Date Collected: 04/03/19 14:45 Date Received: 04/05/19 01:00 Lab Sample ID: 480-151402-2

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	ND ND	1.0	ug/L		04/09/19 12:56	1
1,3-Dichloropropane	ND	1.0	ug/L		04/09/19 12:56	1
1,4-Dichlorobenzene	ND	1.0	ug/L		04/09/19 12:56	1
1,4-Dioxane	ND	50	ug/L		04/09/19 12:56	1
2,2-Dichloropropane	ND	1.0	ug/L		04/09/19 12:56	1
2-Butanone (MEK)	ND *	10	ug/L		04/09/19 12:56	1
2-Chlorotoluene	ND	1.0	ug/L		04/09/19 12:56	1
2-Hexanone	ND	10	ug/L		04/09/19 12:56	1
4-Chlorotoluene	ND	1.0	ug/L		04/09/19 12:56	1
4-Isopropyltoluene	ND	1.0	ug/L		04/09/19 12:56	1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L		04/09/19 12:56	1
Acetone	ND *	50	ug/L		04/09/19 12:56	1
Benzene	ND	1.0	ug/L		04/09/19 12:56	1
Bromobenzene	ND	1.0	ug/L		04/09/19 12:56	1
Bromoform	ND	1.0	ug/L		04/09/19 12:56	1
Bromomethane	ND	2.0	ug/L		04/09/19 12:56	1
Carbon disulfide	ND	10	ug/L		04/09/19 12:56	1
Carbon tetrachloride	ND *	1.0	ug/L		04/09/19 12:56	
Chlorobenzene	ND	1.0	ug/L		04/09/19 12:56	1
Chlorobromomethane	ND	1.0	ug/L		04/09/19 12:56	1
Chlorodibromomethane	ND	0.50	ug/L		04/09/19 12:56	
Chloroethane	ND	2.0	ug/L		04/09/19 12:56	1
Chloroform	ND	1.0	ug/L		04/09/19 12:56	1
Chloromethane	ND	2.0	ug/L		04/09/19 12:56	
cis-1,2-Dichloroethene	1.0	1.0	ug/L		04/09/19 12:56	1
cis-1,3-Dichloropropene	ND	0.40	ug/L		04/09/19 12:56	1
Dichlorobromomethane	ND	0.50	ug/L		04/09/19 12:56	
Dichlorodifluoromethane	ND	1.0	ug/L		04/09/19 12:56	-
Ethyl ether	ND	1.0	ug/L		04/09/19 12:56	1
Ethylbenzene	ND	1.0	ug/L		04/09/19 12:56	
Ethylene Dibromide	ND	1.0	ug/L		04/09/19 12:56	
Hexachlorobutadiene	ND	0.40	ug/L		04/09/19 12:56	
Isopropyl ether	ND	10	ug/L		04/09/19 12:56	
Isopropylbenzene	ND	1.0	ug/L		04/09/19 12:56	
Methyl tert-butyl ether	56	1.0	ug/L		04/09/19 12:56	,
Methylene Chloride	ND	1.0	ug/L		04/09/19 12:56	
m-Xylene & p-Xylene	ND	2.0			04/09/19 12:56	
Naphthalene	ND ND	5.0	ug/L ug/L		04/09/19 12:56	
					04/09/19 12:56	
n-Butylbenzene N-Propylbenzene	ND ND	1.0 1.0	ug/L ug/L		04/09/19 12:56	
o-Xylene	ND	1.0	ug/L		04/09/19 12:56	
			.			
sec-Butylbenzene	ND ND	1.0	ug/L		04/09/19 12:56	
Styrene Text amul methyl ether	ND	1.0	ug/L		04/09/19 12:56	
Tert-amyl methyl ether	22	5.0	ug/L		04/09/19 12:56	1
Tert-butyl ethyl ether	ND ND	5.0	ug/L		04/09/19 12:56	
tert-Butylbenzene	ND ND	1.0	ug/L		04/09/19 12:56	1
Tetrachloroethene	ND *	1.0	ug/L		04/09/19 12:56	1
Tetrahydrofuran Toluene	ND * ND	10 1.0	ug/L ug/L		04/09/19 12:56 04/09/19 12:56	1

Eurofins TestAmerica, Buffalo

Page 9 of 23 4/10/2019

Client Sample Results

Client: ERM-Northeast Job ID: 480-151402-1

Project/Site: IDS Wayland

Client Sample ID: MW-217M-20190403-01

Date Collected: 04/03/19 14:45

Date Received: 04/05/19 01:00

Lab Sample ID: 480-151402-2

Matrix: Water

Method: 8260C - Volatile O	•	•	MS) (Continu	•					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		1.0		ug/L			04/09/19 12:56	1
trans-1,3-Dichloropropene	ND		0.40		ug/L			04/09/19 12:56	1
Trichloroethene	6.9		1.0		ug/L			04/09/19 12:56	1
Trichlorofluoromethane	ND		1.0		ug/L			04/09/19 12:56	1
Vinyl chloride	ND		1.0		ug/L			04/09/19 12:56	1
Dibromomethane	ND		1.0		ug/L			04/09/19 12:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		70 - 130					04/09/19 12:56	
1,2-Dichloroethane-d4 (Surr)	111		70 - 130					04/09/19 12:56	1
4-Bromofluorobenzene (Surr)	99		70 - 130					04/09/19 12:56	1

Surrogate Summary

Client: ERM-Northeast Job ID: 480-151402-1

Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		TOL	DCA	BFB				
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)				
480-151402-1	MW-217S-20190403-01	100	113	97				
480-151402-2	MW-217M-20190403-01	100	111	99				
LCS 480-466874/5	Lab Control Sample	102	109	100				
LCSD 480-466874/6	Lab Control Sample Dup	102	114	106				
MB 480-466874/8	Method Blank	102	110	101				

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Client: ERM-Northeast Job ID: 480-151402-1

Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-466874/8

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 466874	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			04/09/19 11:06	1
1,1,1-Trichloroethane	ND		1.0		ug/L			04/09/19 11:06	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			04/09/19 11:06	1
1,1,2-Trichloroethane	ND		1.0		ug/L			04/09/19 11:06	1
1,1-Dichloroethane	ND		1.0		ug/L			04/09/19 11:06	1
1,1-Dichloroethene	ND		1.0		ug/L			04/09/19 11:06	1
1,1-Dichloropropene	ND		1.0		ug/L			04/09/19 11:06	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			04/09/19 11:06	1
1,2,3-Trichloropropane	ND		1.0		ug/L			04/09/19 11:06	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			04/09/19 11:06	1
1,2,4-Trimethylbenzene	ND		1.0		ug/L			04/09/19 11:06	1
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			04/09/19 11:06	1
1,2-Dichlorobenzene	ND		1.0		ug/L			04/09/19 11:06	1
1,2-Dichloroethane	ND		1.0		ug/L			04/09/19 11:06	1
1,2-Dichloropropane	ND		1.0		ug/L			04/09/19 11:06	1
1,3,5-Trimethylbenzene	ND		1.0		ug/L			04/09/19 11:06	1
1,3-Dichlorobenzene	ND		1.0		ug/L			04/09/19 11:06	1
1,3-Dichloropropane	ND		1.0		ug/L			04/09/19 11:06	1
1,4-Dichlorobenzene	ND		1.0		ug/L			04/09/19 11:06	1
1,4-Dioxane	ND		50		ug/L			04/09/19 11:06	1
2,2-Dichloropropane	ND		1.0		ug/L			04/09/19 11:06	1
2-Butanone (MEK)	ND		10		ug/L			04/09/19 11:06	1
2-Chlorotoluene	ND		1.0		ug/L			04/09/19 11:06	1
2-Hexanone	ND		10		ug/L			04/09/19 11:06	1
4-Chlorotoluene	ND		1.0		ug/L			04/09/19 11:06	1
4-Isopropyltoluene	ND		1.0		ug/L			04/09/19 11:06	1
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			04/09/19 11:06	1
Acetone	ND		50		ug/L			04/09/19 11:06	1
Benzene	ND		1.0		ug/L			04/09/19 11:06	1
Bromobenzene	ND		1.0		ug/L			04/09/19 11:06	1
Bromoform	ND		1.0		ug/L			04/09/19 11:06	
Bromomethane	ND		2.0		ug/L			04/09/19 11:06	1
Carbon disulfide	ND		10		ug/L			04/09/19 11:06	1
Carbon tetrachloride	ND		1.0		ug/L			04/09/19 11:06	
Chlorobenzene	ND		1.0		ug/L			04/09/19 11:06	1
Chlorobromomethane	ND		1.0		ug/L			04/09/19 11:06	1
Chlorodibromomethane	ND		0.50		ug/L			04/09/19 11:06	
Chloroethane	ND		2.0		ug/L			04/09/19 11:06	1
Chloroform	ND ND		1.0					04/09/19 11:06	1
Chloromethane					ug/L			04/09/19 11:06	
	ND		2.0		ug/L				1
cis-1,2-Dichloroethene	ND		1.0		ug/L			04/09/19 11:06	1
cis-1,3-Dichloropropene	ND		0.40		ug/L			04/09/19 11:06	1
Dichlorobromomethane	ND		0.50		ug/L			04/09/19 11:06	1
Dichlorodifluoromethane	ND		1.0		ug/L			04/09/19 11:06	1
Ethyl ether	ND ND		1.0		ug/L			04/09/19 11:06	1
Ethylbenzene	ND		1.0		ug/L			04/09/19 11:06	1
Ethylene Dibromide	ND		1.0		ug/L			04/09/19 11:06	1

Page 12 of 23

4/10/2019

Client: ERM-Northeast Job ID: 480-151402-1

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-466874/8

Matrix: Water

Analysis Batch: 466874

Project/Site: IDS Wayland

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB MB					
Analyte	Result Quali	fier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Isopropyl ether	ND	10	ug/L		04/09/19 11:06	1
Isopropylbenzene	ND	1.0	ug/L		04/09/19 11:06	1
Methyl tert-butyl ether	ND	1.0	ug/L		04/09/19 11:06	1
Methylene Chloride	ND	1.0	ug/L		04/09/19 11:06	1
m-Xylene & p-Xylene	ND	2.0	ug/L		04/09/19 11:06	1
Naphthalene	ND	5.0	ug/L		04/09/19 11:06	1
n-Butylbenzene	ND	1.0	ug/L		04/09/19 11:06	1
N-Propylbenzene	ND	1.0	ug/L		04/09/19 11:06	1
o-Xylene	ND	1.0	ug/L		04/09/19 11:06	1
sec-Butylbenzene	ND	1.0	ug/L		04/09/19 11:06	1
Styrene	ND	1.0	ug/L		04/09/19 11:06	1
Tert-amyl methyl ether	ND	5.0	ug/L		04/09/19 11:06	1
Tert-butyl ethyl ether	ND	5.0	ug/L		04/09/19 11:06	1
tert-Butylbenzene	ND	1.0	ug/L		04/09/19 11:06	1
Tetrachloroethene	ND	1.0	ug/L		04/09/19 11:06	1
Tetrahydrofuran	ND	10	ug/L		04/09/19 11:06	1
Toluene	ND	1.0	ug/L		04/09/19 11:06	1
trans-1,2-Dichloroethene	ND	1.0	ug/L		04/09/19 11:06	1
trans-1,3-Dichloropropene	ND	0.40	ug/L		04/09/19 11:06	1
Trichloroethene	ND	1.0	ug/L		04/09/19 11:06	1
Trichlorofluoromethane	ND	1.0	ug/L		04/09/19 11:06	1
Vinyl chloride	ND	1.0	ug/L		04/09/19 11:06	1
Dibromomethane	ND	1.0	ug/L		04/09/19 11:06	1

MB MB %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 70 - 130 Toluene-d8 (Surr) 102 04/09/19 11:06 70 - 130 1,2-Dichloroethane-d4 (Surr) 110 04/09/19 11:06 1 70 - 130 04/09/19 11:06 4-Bromofluorobenzene (Surr) 101

Lab Sample ID: LCS 480-466874/5

Matrix: Water

Analysis Batch: 466874

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike	LCS	LCS				%Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits
25.0	29.4		ug/L		117	70 - 130
25.0	27.1		ug/L		108	70 - 130
25.0	22.6		ug/L		90	70 - 130
25.0	23.5		ug/L		94	70 - 130
25.0	25.7		ug/L		103	70 - 130
25.0	21.6		ug/L		87	70 - 130
25.0	24.9		ug/L		100	70 - 130
25.0	24.0		ug/L		96	70 - 130
25.0	23.0		ug/L		92	70 - 130
25.0	23.6		ug/L		94	70 - 130
25.0	26.0		ug/L		104	70 - 130
25.0	23.5		ug/L		94	70 - 130
25.0	24.6		ug/L		98	70 - 130
25.0	25.4		ug/L		102	70 - 130
	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Added Result 25.0 29.4 25.0 27.1 25.0 22.6 25.0 23.5 25.0 25.7 25.0 21.6 25.0 24.9 25.0 23.0 25.0 23.0 25.0 23.6 25.0 26.0 25.0 23.5 25.0 23.5 25.0 24.6	Added Result Qualifier 25.0 29.4 29.4 25.0 27.1 25.0 25.0 23.5 25.7 25.0 25.7 25.0 25.0 24.9 25.0 25.0 24.0 25.0 25.0 23.0 25.0 25.0 26.0 25.0 25.0 23.5 25.0 25.0 23.5 25.0 25.0 24.6 24.6	Added Result Qualifier Unit 25.0 29.4 ug/L 25.0 27.1 ug/L 25.0 22.6 ug/L 25.0 23.5 ug/L 25.0 25.7 ug/L 25.0 21.6 ug/L 25.0 24.9 ug/L 25.0 24.0 ug/L 25.0 23.0 ug/L 25.0 23.6 ug/L 25.0 26.0 ug/L 25.0 23.5 ug/L 25.0 23.5 ug/L 25.0 24.6 ug/L	Added Result Qualifier Unit D 25.0 29.4 ug/L ug/L 25.0 27.1 ug/L ug/L 25.0 22.6 ug/L ug/L 25.0 23.5 ug/L ug/L 25.0 25.7 ug/L ug/L 25.0 24.9 ug/L ug/L 25.0 24.0 ug/L ug/L 25.0 23.6 ug/L ug/L 25.0 26.0 ug/L ug/L 25.0 23.5 ug/L 25.0 23.5 ug/L 25.0 24.6 ug/L	Added Result Qualifier Unit D %Rec 25.0 29.4 ug/L 117 25.0 27.1 ug/L 108 25.0 22.6 ug/L 90 25.0 23.5 ug/L 94 25.0 25.7 ug/L 103 25.0 21.6 ug/L 87 25.0 24.9 ug/L 96 25.0 24.0 ug/L 96 25.0 23.0 ug/L 92 25.0 23.6 ug/L 94 25.0 26.0 ug/L 94 25.0 23.5 ug/L 94 25.0 23.5 ug/L 94 25.0 23.5 ug/L 94 25.0 23.5 ug/L 98

Eurofins TestAmerica, Buffalo

Page 13 of 23

4/10/2019

Spike

Added

Job ID: 480-151402-1 Client: ERM-Northeast

> LCS LCS Result Qualifier

Unit

Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-466874/5

Matrix: Water

Analysis Batch: 466874

Client Sample ID: Lab Control Sample

onone oumpions.	- Law Control Campio	
	Prep Type: Total/NA	

D %Rec

%Rec.

Limits

1,2-Dichloropropane 25.0 24.4 ug/L 98 70 - 130 1,3,5-Trimethylbenzene 25.0 25.9 ug/L 104 70 - 130 1,3-Dichlorobenzene 25.0 24.5 ug/L 98 70 - 130

1,3-Dichlorobenzene	25.0	24.5	ug/L	98	70 - 130	
1,3-Dichloropropane	25.0	23.6	ug/L	94	70 - 130	
1,4-Dichlorobenzene	25.0	24.4	ug/L	98	70 - 130	
1,4-Dioxane	500	495	ug/L	99	70 - 130	
2,2-Dichloropropane	25.0	28.9	ug/L	116	70 - 130	
2-Butanone (MEK)	125	248 *	ug/L	198	70 - 130	
2-Chlorotoluene	25.0	25.4	ug/L	102	70 - 130	
2-Hexanone	125	144	ug/L	115	70 - 130	
4-Chlorotoluene	25.0	25.1	ug/L	100	70 - 130	
4-Isopropyltoluene	25.0	27.0	ug/L	108	70 - 130	
4-Methyl-2-pentanone (MIBK)	125	129	ug/L	104	70 - 130	
Acetone	125	155	ug/L	124	70 - 130	
Benzene	25.0	23.6	ug/L	94	70 - 130	
Bromobenzene	25.0	23.4	ug/L	94	70 - 130	
Bromoform	25.0	24.9	ug/L	99	70 - 130	
Bromomethane	25.0	20.0	ug/L	80	70 - 130	
Carbon disulfide	25.0	21.5	ug/L	86	70 - 130	
Carbon tetrachloride	25.0	31.2	ug/L	125	70 - 130	
Chlorobenzene	25.0	23.9	ug/L	96	70 - 130	
Chlorobromomethane	25.0	23.9	ug/L	96	70 - 130	
Chlorodibromomethane	25.0	27.1	ug/L	109	70 - 130	
Chloroethane	25.0	18.5	ug/L	74	70 ₋ 130	
Chloroform	25.0	23.9	ug/L	96	70 ₋ 130	
Chloromethane	25.0	22.6	ug/L	90	70 - 130	
cis-1,2-Dichloroethene	25.0	23.5	ug/L	94	70 - 130	
cis-1,3-Dichloropropene	25.0	27.2	ug/L	109	70 ₋ 130	
Dichlorobromomethane	25.0	25.5	ug/L	102	70 - 130	
Dichlorodifluoromethane	25.0	23.3	ug/L	93	70 ₋ 130	
Ethyl ether	25.0	24.0	ug/L	96	70 ₋ 130	
Ethylbenzene	25.0	24.5	ug/L	98	70 - 130	
Ethylene Dibromide	25.0	23.3	ug/L	93	70 ₋ 130	
Hexachlorobutadiene	25.0	24.8	ug/L	99	70 - 130	
Isopropyl ether	25.0	28.4	ug/L	114	70 - 130	
Isopropylbenzene	25.0	25.3	ug/L	101	70 - 130	
Methyl tert-butyl ether	25.0	24.3	ug/L	97	70 - 130	
Methylene Chloride	25.0	21.7	ug/L	87	70 - 130	
m-Xylene & p-Xylene	25.0	23.9	ug/L	96	70 - 130	
Naphthalene	25.0	23.2	ug/L	93	70 ₋ 130	
n-Butylbenzene	25.0	26.8	ug/L	107	70 - 130	
N-Propylbenzene	25.0	25.7	ug/L	103	70 - 130	
o-Xylene	25.0	22.8	ug/L	91	70 - 130	
sec-Butylbenzene	25.0	25.9	ug/L	104	70 - 130	
Styrene	25.0	24.9	ug/L	99	70 - 130	
Tert-amyl methyl ether	25.0	25.7	ug/L	103	70 - 130	
Tert-butyl ethyl ether	25.0	27.5	ug/L	110	70 - 130	
tert-Butylbenzene	25.0	25.6	ug/L	102	70 - 130	
Tetrachloroethene	25.0	25.3	ug/L	101	70 - 130	
1 2 2 2 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	20.0	_0.0	~∃, ⊏			

Eurofins TestAmerica, Buffalo

Client: ERM-Northeast Job ID: 480-151402-1

Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Water

Matrix: Water

Analysis Batch: 466874

Lab Sample ID: LCS 480-466874/5

Lab Sample ID: LCSD 480-466874/6

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

7 maryolo Batom 400074	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tetrahydrofuran	50.0	64.5		ug/L		129	70 - 130	
Toluene	25.0	23.6		ug/L		94	70 - 130	
trans-1,2-Dichloroethene	25.0	23.6		ug/L		94	70 - 130	
trans-1,3-Dichloropropene	25.0	28.7		ug/L		115	70 - 130	
Trichloroethene	25.0	24.7		ug/L		99	70 - 130	
Trichlorofluoromethane	25.0	21.6		ug/L		86	70 - 130	
Vinyl chloride	25.0	20.9		ug/L		83	70 - 130	
Dibromomethane	25.0	23.2		ug/L		93	70 - 130	

LCS LCS

Surrogate	%Recovery Q	ualifier	Limits
Toluene-d8 (Surr)	102		70 - 130
1,2-Dichloroethane-d4 (Surr)	109		70 - 130
4-Bromofluorobenzene (Surr)	100		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 466874								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	25.0	30.1		ug/L		121	70 - 130	3	20
1,1,1-Trichloroethane	25.0	29.2		ug/L		117	70 - 130	7	20
1,1,2,2-Tetrachloroethane	25.0	22.8		ug/L		91	70 - 130	1	20
1,1,2-Trichloroethane	25.0	22.7		ug/L		91	70 - 130	4	20
1,1-Dichloroethane	25.0	27.5		ug/L		110	70 - 130	7	20
1,1-Dichloroethene	25.0	24.0		ug/L		96	70 - 130	11	20
1,1-Dichloropropene	25.0	27.0		ug/L		108	70 - 130	8	20
1,2,3-Trichlorobenzene	25.0	24.6		ug/L		98	70 - 130	2	20
1,2,3-Trichloropropane	25.0	22.6		ug/L		90	70 - 130	2	20
1,2,4-Trichlorobenzene	25.0	24.6		ug/L		99	70 - 130	4	20
1,2,4-Trimethylbenzene	25.0	26.5		ug/L		106	70 - 130	2	20
1,2-Dibromo-3-Chloropropane	25.0	23.6		ug/L		94	70 - 130	1	20
1,2-Dichlorobenzene	25.0	25.4		ug/L		102	70 - 130	3	20
1,2-Dichloroethane	25.0	26.0		ug/L		104	70 - 130	2	20
1,2-Dichloropropane	25.0	25.4		ug/L		102	70 - 130	4	20
1,3,5-Trimethylbenzene	25.0	27.3		ug/L		109	70 - 130	5	20
1,3-Dichlorobenzene	25.0	25.5		ug/L		102	70 - 130	4	20
1,3-Dichloropropane	25.0	23.9		ug/L		96	70 - 130	2	20
1,4-Dichlorobenzene	25.0	25.2		ug/L		101	70 - 130	3	20
1,4-Dioxane	500	529		ug/L		106	70 - 130	7	20
2,2-Dichloropropane	25.0	31.5		ug/L		126	70 - 130	9	20
2-Butanone (MEK)	125	256	*	ug/L		205	70 - 130	3	20
2-Chlorotoluene	25.0	26.2		ug/L		105	70 - 130	3	20
2-Hexanone	125	146		ug/L		117	70 - 130	1	20
4-Chlorotoluene	25.0	27.8		ug/L		111	70 - 130	10	20
4-Isopropyltoluene	25.0	27.8		ug/L		111	70 - 130	3	20
4-Methyl-2-pentanone (MIBK)	125	130		ug/L		104	70 - 130	0	20
Acetone	125	164	*	ug/L		131	70 - 130	6	20
Benzene	25.0	24.3		ug/L		97	70 - 130	3	20

Eurofins TestAmerica, Buffalo

Page 15 of 23

4/10/2019

Client: ERM-Northeast Job ID: 480-151402-1

Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-466874/6

Matrix: Water

Analysis Batch: 466874

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analyte	Spike Added		LCSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPD Limit
Bromobenzene		24.6		ug/L		99	70 - 130	5	20
Bromoform	25.0	26.2		ug/L		105	70 - 130	5	20
Bromomethane	25.0	21.8		ug/L		87	70 - 130	9	20
Carbon disulfide	25.0	22.9		ug/L		92	70 - 130	6	20
Carbon tetrachloride	25.0	33.1	*	ug/L		132	70 - 130	6	20
Chlorobenzene	25.0	24.7		ug/L		99	70 - 130	3	20
Chlorobromomethane	25.0	24.8		ug/L		99	70 - 130	4	20
Chlorodibromomethane	25.0	26.7		ug/L		107	70 - 130	1	20
Chloroethane	25.0	20.5		ug/L		82	70 - 130	10	20
Chloroform	25.0	25.5		ug/L		102	70 - 130	6	20
Chloromethane	25.0	23.0		ug/L		92	70 - 130	2	20
cis-1,2-Dichloroethene	25.0	23.9		ug/L		95	70 - 130	2	20
cis-1,3-Dichloropropene	25.0	28.7		ug/L		115	70 - 130	5	20
Dichlorobromomethane	25.0	27.0		ug/L		108	70 - 130	6	20
Dichlorodifluoromethane	25.0	24.8		ug/L		99	70 - 130	6	20
Ethyl ether	25.0	24.0		ug/L		96	70 - 130	0	20
Ethylbenzene	25.0	25.6		ug/L		102	70 - 130	4	20
Ethylene Dibromide	25.0	24.0		ug/L		96	70 - 130	3	20
Hexachlorobutadiene	25.0	25.8		ug/L		103	70 - 130	4	20
Isopropyl ether	25.0	29.3		ug/L		117	70 - 130	3	20
Isopropylbenzene	25.0	26.4		ug/L		106	70 - 130	4	20
Methyl tert-butyl ether	25.0	25.2		ug/L		101	70 - 130	4	20
Methylene Chloride	25.0	23.8		ug/L		95	70 - 130	10	20
m-Xylene & p-Xylene	25.0	23.8		ug/L		95	70 - 130	0	20
Naphthalene	25.0	23.8		ug/L		95	70 - 130	3	20
n-Butylbenzene	25.0	28.4		ug/L		113	70 - 130	6	20
N-Propylbenzene	25.0	26.9		ug/L		108	70 - 130	5	20
o-Xylene	25.0	24.5		ug/L		98	70 - 130	7	20
sec-Butylbenzene	25.0	27.4		ug/L		110	70 - 130	5	20
Styrene	25.0	25.4		ug/L		102	70 - 130	2	20
Tert-amyl methyl ether	25.0	26.5		ug/L		106	70 - 130	3	20
Tert-butyl ethyl ether	25.0	28.7		ug/L		115	70 - 130	4	20
tert-Butylbenzene	25.0	26.7		ug/L		107	70 - 130	4	20
Tetrachloroethene	25.0	27.1		ug/L		109	70 - 130	7	20
Tetrahydrofuran	50.0	66.0	*	ug/L		132	70 - 130	2	20
Toluene	25.0	25.0		ug/L		100	70 - 130	6	20
trans-1,2-Dichloroethene	25.0	24.8		ug/L		99	70 - 130	5	20
trans-1,3-Dichloropropene	25.0	29.0		ug/L		116	70 - 130	1	20
Trichloroethene	25.0	25.7		ug/L		103	70 - 130	4	20
Trichlorofluoromethane	25.0	22.5		ug/L		90	70 - 130	4	20
Vinyl chloride	25.0	22.9		ug/L		92	70 - 130	9	20
Dibromomethane	25.0	24.7		ug/L		99	70 - 130	6	20

LCSD LCSD

Surrogate	%Recovery Quality	fier Limits
Toluene-d8 (Surr)	102	70 - 130
1,2-Dichloroethane-d4 (Surr)	114	70 - 130
4-Bromofluorobenzene (Surr)	106	70 - 130

Page 16 of 23

QC Association Summary

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-151402-1

GC/MS VOA

Analysis Batch: 466874

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-151402-1	MW-217S-20190403-01	Total/NA	Water	8260C	
480-151402-2	MW-217M-20190403-01	Total/NA	Water	8260C	
MB 480-466874/8	Method Blank	Total/NA	Water	8260C	
LCS 480-466874/5	Lab Control Sample	Total/NA	Water	8260C	
LCSD 480-466874/6	Lab Control Sample Dup	Total/NA	Water	8260C	

3

4

8

9

11

40

14

Lab Chronicle

Client: ERM-Northeast Job ID: 480-151402-1

Project/Site: IDS Wayland

Client Sample ID: MW-217S-20190403-01

Lab Sample ID: 480-151402-1 Date Collected: 04/03/19 14:36 **Matrix: Water**

Date Received: 04/05/19 01:00

Batch **Batch** Dilution Batch **Prepared** Method **Factor** or Analyzed **Prep Type** Type Run Number Analyst Lab Total/NA 8260C 04/09/19 12:31 AEM TAL BUF Analysis 466874

Client Sample ID: MW-217M-20190403-01

Lab Sample ID: 480-151402-2

Matrix: Water

Date Collected: 04/03/19 14:45 Date Received: 04/05/19 01:00

Batch Batch Dilution **Batch** Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst 8260C Total/NA Analysis 466874 04/09/19 12:56 AEM TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Eurofins TestAmerica, Buffalo

Accreditation/Certification Summary

Client: ERM-Northeast Job ID: 480-151402-1 Project/Site: IDS Wayland

Laboratory: Eurofins TestAmerica, Buffalo

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Arkansas DEQ	State Program	6	88-0686	07-06-19
California	State Program	9	2931	04-01-19 *
Connecticut	State Program	1	PH-0568	09-30-20
Florida	NELAP	4	E87672	06-30-19
Georgia	State Program	4	10026 (NY)	03-31-20
Illinois	NELAP	5	200003	09-30-19
lowa	State Program	7	374	02-28-19 *
Kansas	NELAP	7	E-10187	01-31-20
Kentucky (DW)	State Program	4	90029	12-31-19
Kentucky (UST)	State Program	4	30	03-31-19 *
Kentucky (WW)	State Program	4	90029	12-31-19
Louisiana	NELAP	6	02031	06-30-19
Maryland	State Program	3	294	03-31-20
Massachusetts	State Program	1	M-NY044	06-30-19
Michigan	State Program	5	9937	03-31-19 *
Minnesota	NELAP	5	036-999-337	12-31-19
New Hampshire	NELAP	1	2337	11-17-19
New Jersey	NELAP	2	NY455	06-30-19
New York	NELAP	2	10026	03-31-20
North Dakota	State Program	8	R-176	03-31-19 *
Oklahoma	State Program	6	9421	08-31-19
Oregon	NELAP	10	NY200003	06-09-19 *
Pennsylvania	NELAP	3	68-00281	07-31-19
Rhode Island	State Program	1	LAO00328	12-30-19
Tennessee	State Program	4	TN02970	03-31-20
Texas	NELAP	6	T104704412-15-6	07-31-19
USDA	Federal		P330-11-00386	02-06-21
√irginia	NELAP	3	460185	09-14-19
Washington	State Program	10	C784	02-10-20
Wisconsin	State Program	5	998310390	08-31-19

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: ERM-Northeast Project/Site: IDS Wayland Job ID: 480-151402-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds (GC/MS)	MA DEP	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF

Protocol References:

MA DEP = Massachusetts Department Of Environmental Protection

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

3

6

9

12

14

Sample Summary

Client: ERM-Northeast Project/Site: IDS Wayland Job ID: 480-151402-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-151402-1	MW-217S-20190403-01	Water	04/03/19 14:36	04/05/19 01:00
480-151402-2	MW-217M-20190403-01	Water	04/03/19 14:45	04/05/19 01:00

3

4

5

9

10

12

13

Client: ERM-Northeast Job Number: 480-151402-1

List Source: Eurofins TestAmerica, Buffalo

Login Number: 151402 List Number: 1

Creator: Kolb, Chris M

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	ERM
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Eurofins TestAmerica, Buffalo

Page 22 of 23

Chain of Custody Record

360325-Boston

360325-Bostom

TestAmerica Buffalo

lestAmerica bullalo 360325-605000									TOCTATOOL	てし
10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Eax (716) 691-7991	S	hain o	f Custo	ain of Custody Record	ord				THE LEADER IN ENVIRONMENTAL TESTING	AL TESTING
Client Information	Sampler: RACIO.	0.0		Lab PM: Mason Becky C	S > A		Carrier Tr	Carrier Tracking No(s):	COC No: 480-127995-28903 6	
-	Phone: And	1		E-Mail:	o fun				1.	
Lyndsey Colbumpa Lany Mastra	2000-118	1	001	becky.mas	on@tes	becky.mason@testamericainc.com	com		Coffe of Ma	140
Company: ERM-Northeast						Ar	Analysis Requested		Job #:	
Address: One Beacon Steet 5th Floor	Due Date Requested:	÷							Cod	
City: Boston	TAT Requested (days)	ys):							B - NaOH N - None C - Zn Aretate	
State, Zip: MA, 02108	T						_	-		
	PO#: 0484298.01			(0	price					eterbydes
Email: Lavery, masters @ com.com, juntosycolbutingermeen Characters, duling gem.com				-						aliandia.
Project Name: IDS Wayland	Project #: 48007117							480-151402 Chain of	of Custody	ify)
Site: Wayland	SSOW#:			-	ısiq (a	_			Other:	
		d)		Matrix (w=water, S=solid, O=wasteroil, eld erform MS/M	OM) - 92M08	10MCP - Chro		Jodanii lete	Jesi Number	
Sample Identification	Sample Date	Lime	G=grab) BT=Tissue, A=A	H X	Z8 <	76		1	Special Instructions/Note:	/Note:
10-80H000-3416-MW	04/03/19	14:36	0	Water N	X				3 Contact Sampler	
MW-217M-20190403-01		五:元		Water N N	X			1	7	and
				Water					N	
				Water						
				Water						
				Water						
				Water						
										9
Possible Hazard Identification Non-Hazard Plammable Skin Irritant Poison B	son B Unknown		Radiological	0)	ample L	isposal (A	fee may be assesse	d if samples are reta	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Return To Client Months	
Deliverable Kequested: I, II, III, IV, Other (specify)				<i>n</i>	pecial ir	structions/C	Special Instructions/QC Requirements:			
Empty Kit Relinquished by:		Date:		Time:			Me	Method of Shipment:		
S	5	17.15	Ö	Company	Received by	- Ad-pa		Date/Time:	S Inf Company	9
Relinguished by:	Date/Time:	- 1 Pear		Company	Received by	od by:	resel	Date/Time: Date/Time:	9 900 Company	
Custody Seals Intact: Custody Seal No.:			1		Cooler	Temperature(s	Cooler Temperature(s) "C and Other Remarks:	3.1	- サ	
									Ver. 01/16/2019	6/2019